Game Changer... Again.

The new Raisbeck/Hartzell Swept Blade Turbofan Propeller

the new SWEPT BLADE TURBOFAN PROPELLER FOR THE KING AIR 200 FAMILY

developed jointly by Raisbeck Engineering and Hartzell Propeller

STUNNING RAMP PRESENCE

LARGER DIAMETER (96")

MORE THRUST

1,090 FEET TAKEOFF IMPROVEMENT (as part of the EPIC PLATINUM Performance Package) AFFORDABLE ALUMINUM CONSTRUCTION

• AND... YOU CAN FEEL THE INCREASED ACCELERATION DURING TAKEOFF

GAME CHANGER... AGAIN.

(200/B200/B200GT)

TAKEOFF (FLAPS UP. 12.500 lbs. 3 tance Over 50 art 25 Balanced F ngth (BFL)

elerate-Stop Dist

elerate-Go Dist

CLIMB (12,500 lbs, SL/ISA Two Engine Rate-of-Cli

CRUISE (11,000 lbs, ISA) Max. Cruise Prop RPM

LANDING (FLAPS DOW nding Distance C ithout prop revers

PROPELLERS

The New Swept Blade Turbofan Propellers provide unparalleled performance increases across the entire flight envelope for every King Air 200 ever built. Uniquely certified with FAR part 25 Alternate Balanced Field Lengths for true Airline levels of operational safety, the combination of the Swept Blade Props with the EPIC Performance Package is the best-equipped 200/B200/ B200GT, whether built in 1974 or 2013.

Raisbeck EPIC PLATINUM Performance System with NEW SWEPT BLADE TURBOFAN PROPELLERS

FAA-Certified Performance Data (from FAA-approved Flight Manuals)

Data Applicable to All 200-Series

		Factory	
10/1	2.210 ft	3,300 ft	1.090 ft less runway
	3,990 ft	Not Certified	Airline Safety Standards
Э	3,250 ft	3,380 ft	130 ft less runway
	3,450 ft	6,370 ft	2,920 ft less runway

nb	2,510 ft/min	2,420 ft/min	90 ft/min more

	1,600 - 1,800	1,900	Quieter cruise and cabin		
I, 11,000 lbs, SL/ISA)					
	90 kts	99 kts	9 kts slower approach		
50 ft	1,990 ft	2,520 ft	530 ft less runway		
	96" Raisbeck/	93″	Premium alternate		
	Hartzell Swept	Hartzell/	to Power Props		
	Blade Turbofan	Beech	Stunning ramp		
	4-Blade	4-Blade	presence		

Data Applicable to B200GTs (PT6A-52 Engines)

CLIMB (12,500 lbs, SL/ISA)	RAISBECK	BASIC	IMPROVEMENTS		
Time-to-Climb to 28,000 ft	14 minutes	16 minutes	2 minutes quicker		
Time-to-Climb to 33,000 ft	18 minutes	22 minutes	4 minutes quicker		
CRUISE (11,000 lbs, ISA)					
Max. Cruise Speed, 28,000 ft	318 ktas	307 ktas	11 knots faster		
Max. Cruise Speed, 33,000 ft	307 ktas	296 ktas	11 knots faster		

Data Applicable to B200s (PT6A-42 Engines)

CLIMB (12,500 lbs, SL/ISA)	RAISBECK	BASIC	IMPROVEMENTS
Time-to-Climb to 28,000 ft	15 minutes	19 minutes	4 minutes quicker
Time-to-Climb to 33,000 ft	22 minutes	29 minutes	7 minutes quicker

CRUISE (11,000 lbs, ISA)

Max. Cruise Speed, 28,000 ft	295 ktas	285 ktas	10 knots faster
Max. Cruise Speed, 33,000 ft	286 ktas	273 ktas	13 knots faster

Data Applicable to 200s (PT6A-41 Engines)

CLIMB (12,500 lbs, SL/ISA)	RAISBECK	BASIC	IMPROVEMENTS		
Time-to-Climb to 28,000 ft	17 minutes	21 minutes	4 minutes quicker		
Time-to-Climb to 33,000 ft	25 minutes	37 minutes	12 minutes quicker		
CRUISE (11,000 lbs, ISA)					
Max. Cruise Speed, 28,000 ft	283 ktas	271 ktas	12 knots faster		
Max. Cruise Speed, 33,000 ft	270 ktas	256 ktas	14 knots faster		

"The biggest benefit of propeller blade sweep for the King Air type of airplane is that it allows for a larger diameter propeller without increasing the sound level in the airplane and on the ground. This in turn provides for more takeoff and climb thrust."

– James Raisbeck

the Raisbeck/Hartzell Swept Blade Turbofan Propeller **TECHNICAL OVERVIEW**

Why Sweep the Propeller blades?

number is over .9 at cruise.

This same high-Mach phenomenon is also very much present during takeoff at low forward airspeeds but higher prop RPM. As an example, at 120 Knots during initial climb at 2000 RPM, the propeller tip Mach is an astonishingly high .8.

These takeoff, climb and cruise conditions are encountered on almost every King Air 200 flight, and they push the propeller blades significantly into the transonic drag rise for airfoils and unswept wings.

As a comparative example, commercial airliners and business jets typically fly around Mach .79 to .82, and some of them are pushing .90 (747) and even as high as .92 (Gulfstream 650 and Cessna Citation Ten). The wing sweep on these airplanes varies from 30 to 40 degrees. All one has to do is look at the top view of any of these aircraft to see how dramatic the sweep is (see figures above right).

Typical commercial airplane quarter-chord sweep angles are the Doug-Mach number. las DC-8 at 32 degrees and the Boeing 757 with 25 degrees. Boeing's biggest sweep ever built into a Boeing commercial airplane is the 747 Merely adding propeller diameter doesn't necessarily add proportionate performance improvement and it can be measurably noisier bewith $37\frac{1}{2}$ degrees of guarter cord sweep which cruises over Mach .9 cause of high Mach effects at the outer parts of the blades. when pushed.

The newer King Air 200s can cruise as fast as .52 Mach (M_{MO}) at 28,000 feet. At a propeller RPM of 1800, the propeller tip Mach

Gulfstream 650

Cessna Citation X

With a jet airplane, its entire wing is at the same Mach number. However, with a propeller blade, the farther out on its diameter, the higher the Mach number. Adding additional diameter to a propeller adds to its tip Mach number, which in turn adds unwanted additional transonic drag and noise. This of course detracts from the other desirable performance increases resulting from such an increase in diameter.

Now, air over an airfoil doesn't know if that airfoil is part of a wing going straight through the air, or a propeller blade being whirled around in a circle by its propeller hub. The air reacts the same to increasing

Introducing blade sweep to the blades can largely overcome these But to the layman, it is not intuitively obvious that sweeping the blades drawbacks. You are never going to get rid of noise, but blade sweep of a propeller installed on a King Air that incorporates no wing sweep does allow you to increase diameter to increase performance without itself and flies at cruise Mach numbers well below the transonic drag paying the normal penalties. rise, makes any sense.

Brief History of Wing and Blade Sweep

The next question is, if the swept wing has been around since Willy Messerschmitt put it on the ME 163 in 1943, and that work was discovered by George Schiarer from Boeing after the War in 1945 and was first employed in 1947 on the B-47 swept-wing bomber, why hasn't anybody designed swept propeller blades until now?

Actually, there have been some successful attempts to design and build true swept propellers. The European A400M cargo plane has swept wings and swept propellers (below). It is designed to fly at Mach .72 and airspeeds to 421 knots. The propeller has 8 blades and is very costly for general aviation consideration.

Airbus A400M

The blades on these propellers have cut-back leading edges, but the trailing edges remain unswept. Quarter chord sweep (the sweep of There are other examples such as the C130J (above), but they are all on very expensive and usually military airplanes. As such, they inherthe 25% chord) is what the air responds to and calibrates well with ently don't qualify for markets such as the King Air. drag rise at higher Mach.

Lockheed C130J

And since no one has gone there in propeller design for airplanes like the King Air, no market has ever been developed. Market is what drives research, technology and their results-new products which satisfy a new market need.

The team of Hartzell Propeller and Raisbeck Engineering have combined for the last three decades to push back the dual boundaries of technology and market. The latest of these efforts is the Raisbeck Swept Blade Turbofan Propellers (SBTP).

Application of Wing Sweep to the King Air Propeller

Surveying a number of recent general aviation airplane propellers, they at first appear to have swept blades. But they don't. Several examples exist like the Hartzell Scimitar propeller (below).

Hartzell Unswept Scimitar Propeller

One of the latest of these is the Composite Scimitar Propeller for the King Air 250.

The graph below compares the quarter-chord sweeps of the blades on our current Raisbeck Turbofan Power Prop with our new Swept Blade Turbofan Propeller.

When viewed side by side (see below), the visual effect of the blade sweep stands out in a crowd.

Current Raisbeck Power Prop

New Raisbeck Swept Blade Prop

Development and FAA certification Flight Testing

First conforming propellers with the new blades were delivered to Raisbeck's flight-test facilities In June 2012, following 2¹/₂ years of CFD analyses and resulting studies and trade-offs. Configuration had been frozen in February 2012, and Hartzell had then begun manufacture of the pre-production blades.

During development flight testing, three different propellers were evaluated on a fully instrumented King Air B200; the current Hartzell OEM propeller for the B200GT (93" diameter); the current Raisbeck Turbofan Power Prop (94" diameter); and the new Swept Blade Turbofan Prop (96" diameter). Incremental increases in performance between these three were documented, and fell roughly as expected, with performance following increased diameter in each case.

With performance well documented in-house, Raisbeck's engineers went forward with full FAA certification. FAA flight testing was completed in August, and all submittals were made except the new Airplane Flight Manual Supplements containing the performance. These were submitted two months later and accepted shortly thereafter.

The propeller itself was separately Type-certificated by Hartzell to add to their Type Certification Data Sheet, a necessary step toward Raisbeck certification. Details of the certified performance comparisons are provided on page 15.

Manufacturing Considerations

The large sweep on the new propeller in turn required new aluminum forgings for quantity production. New forgings cost money; they are provided to Hartzell by Alcoa in this case. Long lead times for new forgings are typical. However, the trade-off is the per-unit manufac-

turing cost of the resulting aluminum blades as compared with the only from large aluminum ingots. Three complete propellers were required; other alternative-composite construction. two for performance, stability and control, governor pressure, takeoff, landing and taxi characteristics; the third Swept Blade Propeller was fully instrumented and put on one side only, to document stress, strain, lers are two times or more of an aluminum blade. In all probability, loads, vibration, and dynamic response.

Typically the recurring cost and resulting pricing of composite propelthis new technology for business and general aviation applications will find a home on more airplane models, both OEM and retrofit.

The blades used for flight testing and FAA certification were machined

Raisbeck Swept Blade Turbofan Propellers installed on a King Air B200

The overall advantage of a composite propeller is the weight savings over aluminum. The drawback is cost. In the case of the Swept Blade Turbofan Propellers, there is no increase in weight over the current Raisbeck Power Props; new and thinner airfoils more than compensated for the increased diameter.

With all this in mind, the Raisbeck/Hartzell team opted for aluminum construction. The benefactor of this choice is the customer—affordable new technology.

Pricing and Availability

The Swept Blade Turbofans are priced \$8,900 per shipset above the current Raisbeck prices for the Power Props. The 2013 price for the Swept Blade Turbofan Propellers alone is \$83,400 per shipset, and in combination with the EPIC Performance System is \$149,850. The Swept Blade Turbofan Propeller model number is HC-D4N-3A/D9515K, complete with prop deice, spinner and all necessary hardware.

The current Power Prop, in production since 1984, will continue to be offered for those who want commonality of their current Raisbeckequipped fleet, and for those wishing to save money.

Deliveries begin March 1st to customers of record. Detailed information has been sent to all 118 dealers and installation centers worldwide.

The engineers and marketers at Raisbeck are looking at where the new technology should be applied next, and on what model aircraft. In keeping with Raisbeck Engineering's long-standing policy of proving out new technology and certifying it before offering it for sale or, in most cases even talking about it, any discussion of what tomorrow brings will have to wait until tomorrow.

Raisbeck Engineering, Inc. 4411 South Ryan Way Seattle, WA 98178 USA (206) 723-2000 (800) 537-7277 www.raisbeck.com

sweptprop@raisbeck.com